"Easy Does It": More Molarity Practice

- 1. How many grams of K₂O are needed to prepare a 200.0mL 0.25M solution?
- 2. How many grams of MgCl₂ are needed to prepare a 150.mL 0.50M solution?
- 3. What is the concentration of a solution made from mixing 25g of $C_6H_{12}O_6$ and diluting with water to 250 mL?
- 4. What is the concentration of a solution prepared by mixing 3.2g of NaOH and diluting to 0.50 L with water?
- 5. How many milliliters are required to prepare a 0.45M solution of $Cu(OH)_2$ if 2.3g is used?
- 6. How many liters are required to prepare a 0.60M solution of CuO if 5.72g is used?
- 7. How would you prepare a 500.0mL 0.200M solution of AgNO₃ if you have a 0.500M solution to use?
- 8. How would you prepare a 200.0mL 0.200M solution of AgNO₃ if you have a 0.500M solution to use?
- 9. How many milliliters of a 2.00M solution of NaOH would you need to prepare 500.0mL of a 1.00M solution?
- 10. $AgNO_3 + CaCl_2 \rightarrow Ca(NO_3)_2 + AgCl$ If 250. mL of 0.500M AgNO₃ are added to CaCl₂, how many grams of AgCl will be produced?
- CsBr + Al(OH)₃ → AlBr₃ + CsOH
 a. If 25 g of AlBr₃ was produced when 125 mL of a CsBr solution was added, what was the molarity of the CsBr solution?
 - b. How many mL of 0.50 M CsBr are required to produce 100 g of CsOH?